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ABSTRACT

The large-eddy simulation of the spatial evolution of a station-

ary cross
ow vortex packet in a three-dimensional boundary layer

was performed. Although a coarse grid was used (compared to that

required by a direct numerical simulation) the essential features of

the disturbance evolution, such as the spanwise disturbance spread-

ing and the vortex rollover, were captured accurately. The eddy

viscosity became signi�cant only in the late nonlinear stages of the

simulation.

1. Introduction

The understanding and control of the transition from laminar to

turbulent 
ow on swept wings are of great technological importance

for the aerospace industry for many reasons. Laminar 
ow control,
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for instance, would reduce the drag and increase the e�ciency of

transportation systems.

The transitional 
ow on swept wings, however, involves extremely

complex phenomena. Leading-edge contamination and cross
ow in-

stabilities, for example, can cause the 
ow to breakdown. Arising at

the wing/fuselage juncture, turbulence contaminates the 
ow along

the leading edge, causing transition. Gaster (1965) showed that this

turbulent contamination can be avoided by placing a bump on the

leading edge and near the wing/fuselage juncture. Cross
ow insta-

bilities are excited because of the pressure gradients and cross
ow

velocity component, which develops because of wing sweep. The

cross
ow velocity has an in
ectional point leading to an inviscid in-

stability, which is very di�erent from the viscous instability of the

T{S type. Among others, M�uller and Bippes (1988) have observed

both stationary and traveling cross
ow disturbances in their wind-

tunnel experiments.

In experimental studies of transition, however, such factors as

free-stream turbulence, wind-tunnel noise, wall interference, surface

roughness, measurement limitations, etc. make the identi�cation of

the instabilities that are of primary importance a very di�cult task.

Theories also have di�culties when the nonlinear interaction of dis-

turbance is important. Numerical simulations which solve the un-

steady, nonlinear Navier-Stokes equations provide a very promising

but expensive way to investigate the three-dimensional boundary-

layer transition problem. The direct numerical simulations (DNS)

to date have been limited to very low Reynolds numbers because

of the grid-resolution requirements; for example, Spalart (1989) per-

formed a DNS of swept Hiemenz 
ow with a 256 � 20 � 32 mesh

(chordwise�wall-normal �spanwise). The evolution of the distur-

bance up to the very weakly nonlinear stage was captured in the

simulation. With DNS, Joslin and Street (1993) studied the role

of stationary cross
ow vortices on swept-wedge 
ow; using a grid

of 901 � 61 � 32 points, they captured the qualitative breakdown

features of nonlinear stationary vortex interactions.

A technique that could quantify the full transition process on a

swept wing is the large-eddy simulation (LES) of the Navier-Stokes

equations. In LES the large scales of motion are computed accu-

rately, while only the subgrid-scale motions, which are presumably

more universal, are modeled. This permits the use of simpler parame-

terizations of the subgrid-scale (SGS) stresses. Recently, for instance,



the dynamic eddy-viscosity model has been successfully applied to

the plane channel transition problem by Germano et al., 1991. The

most attractive characteristic of the model is that the model coef-

�cient is calculated from the large-scale 
ow features rather than

speci�ed a priori ; this feature allows the SGS stresses to vanish in

laminar 
ows and near solid walls.

In this paper, LES is used to study the role of stationary cross
ow

vortices in swept-wing boundary-layer 
ow. Section 2 gives the the

problem formulation, section 3 a discussion of the results, and section

4 presents some conclusions.

2. Problem Formulation

The present technique relies on the decomposition of the instan-

taneous velocity ~ui(x; t) and pressure ~p(x; t) into base, Ui(x) and

P (x), and disturbance, ui(x; t) and p(x; t), components as

~ui(x; t) = Ui(x) + ui(x; t) and ~p(x; t) = P(x) + p(x; t); (1)

where x = (x; y; z) are chordwise, wall-normal, and spanwise coordi-

nates and t is time.

After substituting (1) into the Navier-Stokes equations and sub-

tracting out the base-
ow equations, the disturbance equations result

and are given as
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In LES, the large-scale (grid-resolved) components of the velocity

and pressure are calculated and the e�ects of the small, unresolved

scales are modeled. By applying the �ltering operation

f(x) =

Z
D

f(x0)G(x;x0)dx0; (4)

to (2) and (3), the governing equations for the large-scale velocity

and pressure can be obtained:
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and
@ui

@xi
= 0; (6)

where ( ) denotes the �ltered variables (corresponding to the large-

scale motions) and �ij is the subgrid-scale (SGS) stress tensor given

by

�ij = uiuj � uiuj ; (7)

Here, the tensor is modeled with the dynamic SGS viscosity model

proposed by Germano et al. (1991) in the later formulation described

by Lilly (1992).

To solve equations (5)-(7), fourth-order �nite di�erences and fourth-

order compact di�erences are used in the chordwise direction for the

pressure and the momentum equations, respectively, Chebyshev se-

ries are used in the wall-normal direction, and Fourier series are

used in the spanwise direction. The implicit Crank-Nicolson scheme

is used for the time-advancement of the wall-normal di�usion terms

and a three-stage Runge-Kutta scheme for the remaining terms.

A schematic of the swept-wing problem is shown in Figure 1.

To simplify the problem, wing curvature is neglected and an in�nite

span is assumed. For the resulting swept-wedge problem, the base


ow can be described by the Falkner-Skan-Cooke similarity pro�les.

Furthermore, as shown in Figure 1, the computational domain is only

a chordwise subset of the airfoil.

The disturbances are required to vanish far from the wing and

on the wing surface, the steady base 
ow is forced at the in
ow

boundary, and the bu�er-domain technique of Streett and Macaraeg

(1989) is used at the out
ow boundary. Periodic boundary conditions

are implied in the spanwise direction because Fourier series are used.

Stationary cross
ow-vortex packets are introduced into the boundary

layer by steady suction and blowing through a spanwise periodic

array of holes in the wing. The suction and blowing distribution is

shown in Figure 2.

The parameters for the simulation are chosen to match those of

wind-tunnel experiments (M�uller and Bippes 1988; Dagenhart et al.

1989). The chord length is c = 1:84m, the wing sweep is �
1
= 45�,

and the angle-of-attack is approximately �4�. Based on the in
ow

boundary-layer thickness and edge velocity, the Reynolds number is

Re = 996:4. The disturbance is initiated near xc = 0:22, where xc is

the relative chordwise coordinate x=c.
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Figure 1: Schematic of the swept wing, computational domain and

coordinate directions.

Figure 2: Suction/blowing velocity pro�les in the chordwise and

spanwise directions

The computational domain is 857� � 50� � 108� (respectively in

the chordwise, wall-normal and spanwise directions), and 301�41�33

grid points are used for the LES. The previous DNS by Joslin and

Streett (1993) used 901 � 61 � 33 grid points in the same domain;

they note that the resolution appeared marginal in the late nonlinear

stages of breakdown. Time was advanced with a �xed step size �t =

0:4, and the amplitude of the suction and blowing velocity pro�le

(Figure 2) was A = 1� 10�5.

3. Results

Figure 3 shows instantaneous (base+disturbance) velocity pro-



Figure 3: Total (base+disturbance) velocity pro�les at di�erent

chordwise and spanwise locations. U ; U + u at z =: � 0,

3.375, 4 6.75, � 10.125, � 13.5, � 16.875, + 20.25, � 23.625.



Figure 4: Chordwise disturbance velocity (u) contours at the chord-

wise locations: (a) xc=0.25, (b) xc=0.35, and (c) xc=0.45.

�les obtained from the LES at two stations along the chord. The

various pro�les at each station correspond to adjacent spanwise lo-

cations. The chordwise and spanwise velocity pro�les indicate that,

at xc = 0:375, the growing disturbance has already altered the mean


ow. Downstream, at xc = 0:425, the amplitude of the disturbance

velocities become su�ciently large to cause in
ections to the velocity

pro�les. These in
ectional pro�les were observed previously in both

DNS (Joslin et al., 1993) and experiments (M�uller and Bippes 1988,

Dagenhart et al. 1989). The normal velocity pro�les show evidence

of spanwise regions of 
ow moving away from the wall and adjacent

spanwise regions of 
ow moving toward the wall; these types of mo-

tion intensify as one moves downstream. Although not shown in this

study, these in
ectional pro�les spawn the rapid growth of secondary

instability modes, which lead to the catastrophic breakdown to tur-

bulence (see Kohama et al., 1991). The quantitative agreement with

the DNS results of Joslin and Streett (1993) is quite good.

Figure 4 shows spanwise planes of the chordwise disturbance ve-

locity contours obtained by the LES at three chordwise locations.

At xc = 0:25 (near the suction and blowing hole), the vortex packet



Figure 5: Maximum chordwise perturbation velocity u at ymax =

1:5�.

Figure 6: Maximum ratio of eddy to molecular viscosity at ymax =

1:5�.

evolves isolated from adjacent packets. Downstream near xc = 0:35,

the disturbance spreads in the spanwise direction and interacts with

adjacent packets. Finally, near xc = 0:45, the cross
ow vortices non-

linearly interact causing the so-called vortex-rollover phenomenon.

This phenomenon is characterized by low-speed 
uid near the wall

being lifted up into the boundary layer while high-speed 
uid is

drawn toward the wall. During the stage of vortex-rollover the in-


ectional velocity pro�les discussed above are observed. Once again,

the LES are in good agreement with the DNS.

Figure 5 shows the maximum amplitude of the disturbance as a

function of the chordwise position. The disturbance is found to grow

exponentially, with a sudden increase in the growth rate near the

spanwise spreading and vortex/vortex interaction region (xc = 0:32).



Figure 6 shows that the maximum ratio of eddy to molecular viscos-

ity remains very small until the nonlinear vortex/vortex interactions

begin. As the disturbance amplitudes grow, the magnitude of the

eddy viscosity grows and the SGS stresses begin to become impor-

tant. Note that no ad hoc adjustment was made to switch the eddy

viscosity on or o�, and its increase in magnitude re
ects the capa-

bility of the dynamic model to adjust to the characteristics of the

disturbed 
ow �eld.

4. Conclusions

The dynamic subgrid scale eddy-viscosity model was used for the

large-eddy simulation of swept-wing transition. The eddy viscosity

remained small throughout most of the computational domain, but

started to grow in the region of strong nonlinear vortex/vortex in-

teractions, adjusting to the local state of the 
ow. Conceivably, if

unsteady modes were present in the 
ow �eld and the simulation were

continued, the role of the eddy viscosity in damping the unresolved

small-scale 
uctuations would become dominant and the in
ectional

pro�les would cause secondary instabilities to grow at an explosive

rate, causing transition.

Because the magnitude of the eddy viscosity was small in most of

the computational domain, essentially a coarse-grid DNS captured

the essential features of the spatial evolution of the cross
ow vortex

packet. Signi�cant among these features are the vortex-rollover and

the subsequent generation of in
ectional velocity pro�les, which are

responsible for the rapid transition to turbulent 
ow. The present

results were in good agreement with DNS data.

Based on the preliminary results, it appears that LES can be a

useful tool to quantify the phenomenon in the later stages of tran-

sition on a swept wing, where the resolution required by a DNS be-

comes prohibitively expensive. E�orts along this route are currently

underway.
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